

Spreadsheet Programming:

The New Paradigm in Rapid
Application Development

Contact: Info@KnowledgeDynamics.com
 www.KnowledgeDynamics.com © 2002 Knowledge Dynamics, Inc.

mailto:Info@KnowledgeDynamics.com
http://www.knowledgedynamics.com/

 © 2002 Knowledge Dynamics, Inc.

Spreadsheet Programming: The New Paradigm in Rapid
Application Development
A new software development technique known as Spreadsheet Programming dramatically improves the
efficiency of developing complex software. The technique delivers extraordinary cost reductions by making
programmers more productive and allowing business analysts and other non-programmers to play a role in
implementing business logic. Productivity improvements of 90% or more are not unexpected.

The essence of Spreadsheet Programming is this: Corporate software development teams are using
spreadsheet applications such as Microsoft Excel to build and test program logic and business rules, which are
then integrated directly into production systems.

One way to implement the technique is by integrating Excel into applications using COM or Visual Basic for
Applications (VBA). This approach, however, has scalability, performance, and distribution issues.

A product such as KDCalc™, from Knowledge Dynamics, Inc., facilitates Spreadsheet Programming by
compiling Microsoft Excel spreadsheets into executable code that runs independent of Excel. It essentially turns
Excel into a development environment for creating highly sophisticated data processing systems with multiple
inputs and outputs.

This whitepaper offers an introduction and insight into the technique of Spreadsheet Programming and provides
several case studies highlighting the benefits and efficiencies it delivers.

© 2002 Knowledge Dynamics, Inc. All rights reserved. This document may be linked-to but not distributed or
modified without written authorization from Knowledge Dynamics, Inc. All referenced trademarks are property of
their respective owners.

Rapid Application Development Using Spreadsheet Programming
There can be little doubt that spreadsheet applications have been one of the most influential forces driving the
adoption of computers for business and personal use. The ease with which ordinary people can rapidly and
visually create complex logic, what-if scenarios, and simulations has transformed the business environment.

Spreadsheet Programming brings these same efficiencies to software development.

In Spreadsheet Programming, spreadsheet applications such as Microsoft Excel are used to build and test
decisioning algorithms, simulations, reporting, or any other kind of sophisticated calculation and data processing
system.

For single-user applications running on Windows, Excel can be integrated directly using COM or VBA.
However, for server-side or web based applications, direct Excel integration is awkward or impossible. In these
situations a component such as KDCalc from Knowledge Dynamics is ideal, producing small, fast, easily
integrated calculation engines. Figure 1 below illustrates the development process and possible deployment
scenarios:

Build / Test business
logic and Data

Processing rules in
MS Excel. Compile

into executable code
with KDCalc™

Deploy compiled
spreadsheet into

Web Service,
servlets, applets,

applications, EJBs,
etc.

Iterate and enhance
business logic in MS
Excel and re-deploy
without programmer

intervention

Build and Test Integrate Deploy Iterate

Write a deployment
container that passes
input data into data
cells and retrieves
output results from

formula cells.

The Spreadsheet Programming Development Process
using Microsoft Excel® and KDCalc™

Build / Test business
logic and Data

Processing rules in
MS Excel. Compile

into executable code
with KDCalc™

Deploy compiled
spreadsheet into

Web Service,
servlets, applets,

applications, EJBs,
etc.

Iterate and enhance
business logic in MS
Excel and re-deploy
without programmer

intervention

Build and Test Integrate Deploy Iterate

Write a deployment
container that passes
input data into data
cells and retrieves
output results from

formula cells.

Build / Test business
logic and Data

Processing rules in
MS Excel. Compile

into executable code
with KDCalc™

Deploy compiled
spreadsheet into

Web Service,
servlets, applets,

applications, EJBs,
etc.

Iterate and enhance
business logic in MS
Excel and re-deploy
without programmer

intervention

Build and Test Integrate Deploy Iterate

Write a deployment
container that passes
input data into data
cells and retrieves
output results from

formula cells.

The Spreadsheet Programming Development Process
using Microsoft Excel® and KDCalc™

Deployment Container

KDCalc
Runtime
Engine

Spreadsheet
Calculation

File(s)

Deployment Container Can Be:
• Web Service
• Servlet, EJB, JSP
• Application, Applet, DHTML
• etc.

Deployment Container

KDCalc
Runtime
Engine

Spreadsheet
Calculation

File(s)

KDCalc
Runtime
Engine

Spreadsheet
Calculation

File(s)

Deployment Container Can Be:
• Web Service
• Servlet, EJB, JSP
• Application, Applet, DHTML
• etc.
Figure 1: Spreadsheet Programming development process and deployment scenario
 © 2002 Knowledge Dynamics, Inc.

 © 2002 Knowledge Dynamics, Inc.

A Simple Example: Imagine that you are a developer at an Internet retailer. By law your company must
calculate and collect sales tax for goods sold in any state where it has a physical presence. Imagine that as a
developer you have been tasked with writing the module that calculates sales tax for Internet orders.

Figure 2 shows how the tax calculation might be developed using Spreadsheet Programming.

Now you simply pass the transaction data (input data) into the spreadsheet:
// Pass the Subtotal, State, and Presence data into cells B3, B4, B5
taxSheet.setValue(3, 2, 250.29);
taxSheet.setValue(4, 2, “AR”);
taxSheet.setValue(5, 2, true);

and retrieve the result (output data):
// Get the tax from cell B7
double tax = taxSheet.getValue(7, 2);

Simple enough. It seems like it would be easy to write code to do the same thing. But in reality tax calculations
are many times more complicated than this. In some jurisdictions tax is assessed at the municipal level, some
states don’t tax items like clothing but tax other goods, some items trigger luxury tax laws above certain price
points. On top of that, not only do tax rates change from time to time, but tax rules also change. If the company
sells globally, add another exponential increase in complexity. It is easy to see how this could require a
spreadsheet with thousands of cell formulas. Now think about coding this by hand in Java or C++. Ouch.

With Spreadsheet Programming, the logic can all be built and tested in a Spreadsheet Application by an expert
in international tax laws. The developer only needs to pass the transaction data into the right spreadsheet cells
and retrieve the results from the right cells. Furthermore, once the system is built, the tax expert can update it
continually without intervention from the programmer. In fact, one could make the case that this global tax
calculator should be wrapped as a Web Service and offered to other retailers, creating a new revenue stream
for the company.

Figure 2: Spreadsheet with Sales Tax Calculations

The Sales amount is
entered in the blue Cell B3

Delivery State entered
in cell B4

Boolean Indicator of
whether retailer has a
presence goes in B5

Sales Tax is calculated
with a single cell

formula in B7 A lookup table holds tax rates
for the States in E56:D53

The Tax calculation formula returns 0 if
the retailer has no physical presence in
the destination state, otherwise it looks
up the tax rate and multiplies it by the

Sales amount

The Sales amount is
entered in the blue Cell B3

Delivery State entered
in cell B4

Boolean Indicator of
whether retailer has a
presence goes in B5

Sales Tax is calculated
with a single cell

formula in B7 A lookup table holds tax rates
for the States in E56:D53

The Tax calculation formula returns 0 if
the retailer has no physical presence in
the destination state, otherwise it looks
up the tax rate and multiplies it by the

Sales amount

 © 2002 Knowledge Dynamics, Inc.

The Spreadsheet Programming approach has many advantages.

Developing complex logic in a spreadsheet is much more efficient than hand coding in a software
language. The visual nature of spreadsheets and usability features like drag-copy have been critical to their
widespread adoption. When these productivity enhancers are applied to programming, the effects are no less
dramatic. Developers can create calculations and data transformation routines in a spreadsheet in a fraction of
the time that it takes to do the same in code. Beginning developers can be effective at coding logic that might
otherwise require a very skilled resource.

Non-programmers can control business logic. In most corporate software development efforts, business
people or subject matter experts are responsible for driving the business rules and requirements. Because
spreadsheet applications have always been targeted at these mainstream users, business people can
implement business rules in the spreadsheets themselves, rather than handing off a design document to the
development team. This eliminates a major opportunity for miscommunication and diminishes the need for
developers to be experts in the business domain.

Core system behavior can be verified by subject matter experts. One of the most labor-intensive aspects of
software development is testing to verify that the software meets specifications. In many software development
efforts, major parts of the system must be built before any of the parts can be tested. This makes it difficult to
localize the origin of errors. But, when using a spreadsheet to develop the core logic of a system it is easy to
create multiple sets of test data and switch between the sets to test the spreadsheet. This means that core
functionality can be verified locally, before deployment and without writing any code.

Business logic can be updated and maintained without code changes. Once an initial system has been
developed and tested, business people can continually enhance the functionality of the spreadsheets and
redeploy them without involvement of development resources.

The application logic can be deployed to platforms where no spreadsheet application is available. Many
emerging platforms such as embedded and mobile systems are limited by a lack of available of applications and
development tools. A cross-platform technology like Java lets the benefits of Spreadsheet Programming be
realized on emerging and proprietary platforms.

Algorithm internals are more easily hidden from end-users and secured against modification. In
traditional uses of spreadsheets, there is a risk that users can discover or modify proprietary algorithms.
Employing Spreadsheet Programming to package proprietary algorithms reduces this risk because they are
compiled into code.

Spreadsheets can be used for a lot more than you might think. Spreadsheet applications are surprisingly
flexible. Many people think about spreadsheets in the context of financial planning and basic number crunching.
But with built-in functions like ‘IF’, ‘LOOKUP’, and ‘OFFSET’ you can build remarkably sophisticated systems
that are useful in all kinds of applications and industries, from financial systems to training simulations,
embedded systems, high-volume server data processing and reporting, and even games. Most people also link
the idea of spreadsheets to a user-centric grid interface, completely overlooking the value of spreadsheets as
calculation engines.

 © 2002 Knowledge Dynamics, Inc.

Case Study: Business Simulations
It’s long been known that the best way to learn a new skill is through practice. Business Simulations immerse
the learner in a simulated environment where she can practice the skills she needs to be successful on the job.
This occurs by challenging the learner to make the same decisions she will be faced with on the job. Skill
comes as the learner refines her decisions to try to achieve the desired outcomes.

The Problem
In a Business Simulation, the learner’s decisions must result in realistic outcomes. Historically this has meant
hand-coding complex simulation models and spending weeks or months tweaking and debugging their
behavior. This makes these learning experiences difficult and expensive to produce.

The Solution
Knowledge Dynamics, Inc. uses Spreadsheet Programming to develop the underlying simulation models for
Business Simulations. The learner’s input decisions and the resulting outcomes correspond to cells in a
spreadsheet. Using Microsoft Excel, the company develops cell-formulas that calculate the outcomes by
analyzing the learner’s decisions.

The spreadsheet is compiled into java byte-code using KDCalc. Then a user interface is developed to capture
the learner’s decisions, pass them into the compiled spreadsheet and display the resulting outcomes. The user
interface may represent the inputs and outcomes as numbers, text, graphs, or any of a number of other types of
knowledge representation.

The Result
Knowledge Dynamics, Inc. has used Spreadsheet Programming to reduce the cost and cycle times of
developing Business Simulations by as much as 90%. The simulation models are much easier to build and test
in Excel than in code, and subject matter experts can develop the models themselves, without having to teach a
programmer the material first.

 © 2002 Knowledge Dynamics, Inc.

Case Study: Embedded Systems
Network Infrastructure companies such as Telecoms and ISPs have network hardware spread at geographically
disparate locations. It is impractical to have personnel staffed near every piece of equipment, so it is controlled
remotely from hub locations. This control is enabled by Remote Network Management hardware that handles
control requests and performs protocol translations.

The Problem
A provider of network management solutions had a need to develop a new remote network management
hardware product to exploit a specific opportunity in a new market. The company had to rapidly market the
product in advance of competition and also had train customers and internal engineers how to use the product.

The Solution
The company used Spreadsheet Programming to build the operating system of the new product. As control
requests come in, they are authenticated, authorized, dispatched, and repeated based on logic in the
spreadsheet module. Protocol translations are also handled through simple LOOKUPs in the spreadsheet.

The Result
The company was able to develop the operating system for the hardware in 1/3 of the time needed to do the
same for its other products.

The most interesting aspect of this application is that the manufacturer uses the same spreadsheet modules to
simulate the product’s behavior for training applications. The simulation operates at 100% fidelity with the
physical products because they are from the same code base. This has not only made the training more
effective, but also much less expensive and scalable to unlimited users. The increased availability of training
and skilled engineers has resulted in more rapid uptake of the hardware products by the company’s customers.

 © 2002 Knowledge Dynamics, Inc.

Case Study: eCommerce
An Internet telephony company offers extremely discounted international PC-to-Phone calling over the public
Internet. Calls originate anywhere in the world and travel over the Internet to the company’s servers. There
they transfer to long-haul carriers at discounted bulk rates to the destination.

The Problem
In addition to billing the customer, the company is responsible for properly calculating and collecting tax from
the customers in each jurisdiction. Developing server side systems to correctly account for usage metering, rate
application, and tax computations in this globally distributed environment was a daunting task.

The Solution
Accountants developed the logic for rate application, billing, and taxation in Excel. The only custom code
needed was to push call connection data into the spreadsheets and persist the output billing data into a
database.

The Result
Spreadsheet Programming made a nearly insurmountable programming problem feasible for the cash-strapped
startup. Moreover, as tax rates and bulk carrier rates change, they are easily updated without the need for code
changes.

 © 2002 Knowledge Dynamics, Inc.

Case Study: Business Analytics
A provider of enterprise Benefits and HR solutions offers a customer service help-desk feature to its clients. A
client’s employees can call in to ask questions about the tax and growth consequences of different investment
contribution decisions. The solution provider’s CSRs select from over forty specialized spreadsheets to do an
ad-hoc analysis of the employee’s information and convey the results to the employee. Benefits experts
maintain the spreadsheets and distribute updates by posting them in a common server directory.

The Problem
This process had become unwieldy, expensive, and difficult to manage, so the solution provider wanted to
streamline it. The company wanted a web-centric system that could be centrally managed and administered.
The initial plan was to manually convert the spreadsheets to Java code, but this would have been an expensive
development effort with high recurring maintenance costs. Changes or enhancements would mean additional
complex programming.

The Solution
The company used KDCalc to automatically compile the existing spreadsheets into Java byte-code. The
company built intuitive user interfaces for each of the queries the client employees have, and now offers the
service in a secure, self-serve web application. The company implemented workflow processes so that the
benefits experts still maintain the spreadsheets in Excel and redeploy enhancements to production
automatically, without support from the IT team.

The Result
The company was able to eliminate the initial cost of translating the spreadsheets to code and the ongoing cost
of making updates to the system.

 © 2002 Knowledge Dynamics, Inc.

Case Study: eCRM
Traditionally in industrial products markets, sales professionals are responsible for a geographic region. Over
time they develop personal relationships with customers, and are able to offer discounts and bundles. The best
sales professionals cross-sell, putting together ad-hoc packages on the fly, considering factors such as
inventory levels and customer order history.

The Problem
A mid-west wholesaler of industrial grinding wheels and cut-off blades had built up a reputation for its tailored
customer service and sales approach, but was finding that the personal sales approach was limiting its ability to
grow. The company wanted to invest in a web-based quoting and ordering system to increase its order-taking
capacity, but still wanted to be able to offer discounts to customers based on order history, order size, and
inventory status. The company could not afford a large investment in consultants to build the system and did not
have the resources to complete the project in-house using a traditional development method.

The Solution
The company’s sales and finance teams worked together to build a spreadsheet that calculates discounts,
taxes rates, and subtotals based on inventory levels, order size, and order history. The spreadsheet also
calculates line-item margins, and whole-order profit. The small IT staff designed a web user interface, and built
components that populate the spreadsheet with customer order history data and inventory data from the
company’s database.

The Result
The company was able to automate a critical revenue process at a low cost, using mostly internal resources.
The only features developed by consultants were web pages for the user interface. The sales staff became
able to pursue new customers while the company still provided existing customers with personalized service.

A subsequent enhancement to the system added the ability to cross-sell other products related to the order.

